LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
M.Sc. DEGREE EXAMINATION - MATHEMATICS		
FIRST SEMESTER – APRIL 2013		
MT 1816/1811 - REAL ANALYSIS		
ULCEAT LUX VESTRA		
Date : 27/04/2013 Dept. No. Max. : 100 Marks Time : 9:00 - 12:00 Max. : 100 Marks Max. : 100 Marks		
Answer all the questions. Each question carries 20 marks.		
I.a)1) If f is a continuous function on [a,b], then prove that $f \in R(\alpha)$ on [a,b]. OR		
a)2) Define step function and prove: If $a < s < b$, $f \in R(\alpha)_{on}[a,b]$ and $\alpha(x) = I(x-s)$, the unit step		
function, then prove that $\int_{a}^{b} fd\alpha = f(s)$		
a (5)		
b) 1) Let $f \in R(\alpha)$ on [a,b] and $m \le f \le M$. Suppose that Φ is continuous on [m,M]. Define $h(x) = \Phi$ (f(x)), $x \in [a,b]$ then prove that $h(x) \in R(\alpha)$ on [a,b].		
b)2) State and prove the fundamental theorem of calculus with reference to Riemann-Stieltjes (10+5)		
OR c)1) Suppose f is bounded on [a,b], f has only finitely many points of discontinuity on [a,b] and α is continuous at every point at which f is discontinuous then prove that $f \in R(\alpha)$.		
c)2) State and prove the theorem on change of variables. (10+5)		
II.a) 1) Suppose $\{f_n\}$ is a sequence of functions defined on E and suppose		
$ f_n(x) \le M_n \ (x \in E, n = 1, 2, 3,)$. Then prove that $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.		
OR a)2) Let (X) denote the set of all continuous, complex valued, bounded functions on X. prove that		
(X) is a complete metric space. (5)		
b)1) State and prove the Stone -Weierstrass theorem. (15) OR		
c)1) Prove that there exists real continuous functions on the real line which is nowhere differentiable. c)2) Suppose K is compact and the following three conditions hold good. (i) $\{f_n\}$ is a sequence of continuous functions on K		
(ii) $\{f_n\}$ converges pointwise to a continuous function f on K, and		
(iii) $f_n(x) \ge f_{n+1}(x)$, for all $x \in K$, $n = 1, 2, 3,$ Then prove that $f_n \to f$ uniformly on K.		
(5+10)		

III.a)1) Applying Riemann-Lebesgue lemma, prove the follow	ing: If $f \in L(-\infty, +\infty)$ then when
$\alpha \to +\infty, \int_{-\infty}^{+\infty} f(t) \frac{1 - \cos \alpha t}{t} dt = \int_{0}^{\infty} \frac{f(t) - f(-t)}{t} dt.$	
OR	
a)2) Write a short note on the contribution of any two mathematicians	s who had contributed to the analysis
on Fourier Series.	(5)
b)1) State and prove Fejer's theorem and state the consequences of Fe	-
b)2) State and prove Riesz – Fischer's theorem.	(9+6)
OR	
c)1) State Jordan's test and Dini's test for the convergence of a Fourie	
c)2) State and prove Riemann – Lebesgue Lemma.	(6+9)
IV. a)1) Let Ω be the set of all invertible linear operators on R ⁿ . If	O is an open subset of $I(\mathbf{R}^n)$ then
the mapping $A \rightarrow A^{-1}$ is continuous on Ω	22 is an open subset of L(K) then
the mapping $A \rightarrow A$ is continuous on 22	
_	\mathbf{D}^{n}
a)2) If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ then prove that $ A < \infty$ and A is a uniformly contained of $ A < \infty$.	ontinuous mapping of R into R.
(5)	
b) 1) State and prove Implicit function theorem.	(15)
OR	
c)1) Prove that a linear operator A on a finite-dimensional vector spac- range of A is all of X.	ce X is one-to-one if and only if the
 c)2) Suppose E is an open set in Rⁿ, f maps E into R^m, f is different containing f(E) into R^k and g is differentiable at f(x₀). Then provide the defined by F(x) =g(f(x)) is differentiable at x₀ and F'(x₀)=g'(f(x)) 	rove that the mapping \mathbf{F} of E into R^k
V) a) 1) How the chain rule of derivative is derived?	
OR a)2) Briefly explain the application of real analysis to real world issue	26 (5)
a)2) Briefly explain the application of real analysis to real world issueb)1) Explain the rate of change of a function with an illustration.	es. (5)
b)2) What is the area under a parabola bounded by a straight line segu	ment? (7+8)
OR	(7+8)
c)1) Derive the expression for D' Alembert's wave equation for a vib	rating string. (15)
	rating string. (15)